Fossil-Fuel-Free Irrigation Project Overview Last update: 5 September 2025 | Proof-of-Concept System | | Subsystem | Proposed Final System | | |--|---|--------------------------------|--|-----------------------------------| | | 1 lens system 2 Sheet-style Fresnel lenses
(30" x 60") on adjustable
frame that follows sun daily
and allows seasonal
orientation. Capture area: 2.3 m². Focal length: ~31" (787mm). | Solar
Capture | 3 separate lens systems 15 arrays of 16x12 square lenses (830mm x 630mm) on fixed steel cover at permanent 30° angle to horizontal and facing south for each battery. Capture area: 8.3 m². Focal length: 93.5mm (~3.7"). | Day - Charging all sand batteries | | | 600mm of rock wool board
(ComfortBoard 110) for sides
and bottom. Double-pane ¼" tempered
glass for daytime cover. Rock wool for nighttime. | Heat-
Retention
Strategy | 600mm of rock wool board for sides and bottom. Fresnel lenses mounted in steel frame as daytime cover. Rock wool for nighttime. | Soch A-A | | Electrical System Diagram Bioga Chapte 13V Benefit SW 13V 14 14 14 14 14 14 14 14 14 14 14 14 14 | 2.3 metric tons of sand. 1.4 m³ of sand. Need to determine how to efficiently move heat through sand. | Sand
Battery | 13 metric tons of sand/system. 7.2 m³ of sand/system. Need to determine how to efficiently move heat through sand. | | | Notice and server servers | 1 5-kW "Melvin" Stirling engine. High-pressure (40 psi) chamber with misting feature (needs to be perfected). | Stirling
Engine | 1 5-kW "Melvin" Stirling engine. High-pressure (40 psi) chamber with misting feature (needs to be perfected). | A-A Sectional View | | Control System Togerand | 2 hub motors in Melvin. 12-volt DC battery to 'clean' output power. Inverter to convert to 110V AC power. | Electrical
System | 2 hub motors in Melvin. 12-volt DC battery to 'clean' output power. Inverter to convert to 440V AC power. | 2530 | | School Control State Control C | Cooling water initially provided
by hose from faucet. Closed system using air
cooling of heated water. | Cooling
System | Cooling water siphoned from
pumped irrigation water. Open system with new irrigation
water providing constant cool
water. | 3750 | | | 8 Temp sensors in sand, sleeve and on 'cold' end of engine. 6 voltage & current sensors on hub motors and inverter output Pyranometer to measure solar. | Control
System | Temp sensors in sand, sleeve and on 'cold' end of engine. Need to determine other sensor requirements. | 4270 |